BACCALAUREATE 2020 : Reserve

PARTB

QUESTION B1 ANALYSIS

Page 1/1

Use your calculator in b).

Consider the family of functions f_n defined by

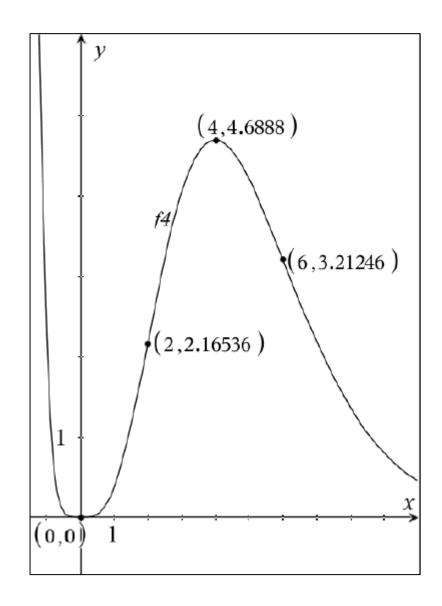
$$f_n(x) = x^n e^{-x}$$
, where $n \in \{2, 3, 4, ...\}$.

 a) Determine the coordinates of the extrema and the points of inflection of the graph of f₄.

The region M is bounded by the graphs of f_2 and f_4 , and by the lines $^{\circ}$ and x = 6.

the volume of the solid of revolution obtained by rotating the in x-axis.

A recently asked question

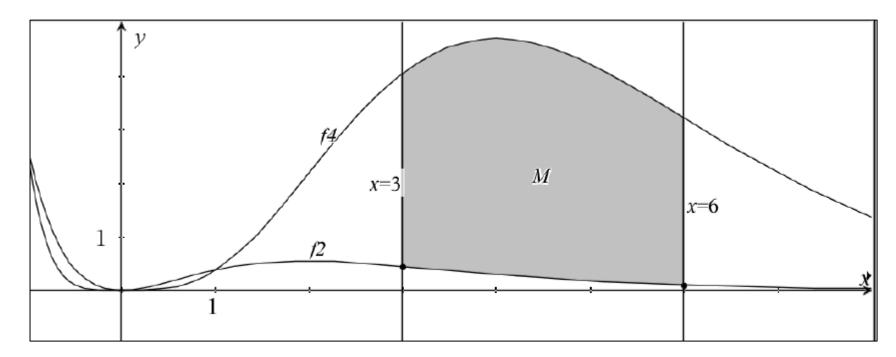

Consider the family of functions f_n defined by

$$f_n(x) = x^n e^{-x}$$
, where $n \in \{2, 3, 4, ...\}$.

a) Determine the coordinates of the extrema and the points of inflection of the graph of f_4 .

solve
$$(f4p(x)=0,x) \cdot x=0$$
 or $x=4$
solve $(f4p(x)>0,x) \cdot 0 < x < 4$
solve $(f4p(x)<0,x) \cdot x < 0$ or $x>4$.

solve
$$(f4pp(x)=0,x) \cdot x=0$$
 or $x=2$ or $x=6$ (0,5 P.)
solve $(f4pp(x)>0,x) \cdot x\neq 0$ and $x<2$ or $x>6$ und solve $(f4pp(x)<0,x) \cdot 2< x<6$


https://www.mentimeter.com/app

b) The region M is bounded by the graphs of f_2 and f_4 , and by the lines x = 3 and x = 6.

Determine the volume of the solid of revolution obtained by rotating the region M about the x-axis.

$$V = \pi \cdot \int_{3}^{6} \left| (\mathbf{f4}(x))^{2} - (\mathbf{f2}(x))^{2} \right| dx \cdot \frac{3 \cdot (17887 \cdot \mathbf{e}^{6} - 1324036) \cdot \mathbf{e}^{-12} \cdot \pi}{2}$$

$$\approx 170,599.$$

Even more practice

c) Show that all the curves with equation $y = f_n(x)$ have two points in common and give their coordinates.

3 marks

d) Show that the graph of f_n for all n has two horizontal tangent lines and determine an equation of each of these tangent lines.

4 marks

Determine the intervals where f_n is increasing or decreasing.
 Distinguish between even and odd values of n.

c) Show that all the curves with equation $y = f_n(x)$ have two points in common and give their coordinates.

Solution 1: solve
$$(\mathbf{f2}(x) = \mathbf{f3}(x), x) \cdot x = 0 \text{ or } x = 1$$

Solution 2:
$$f_n(x) = f_n(x) \Leftrightarrow x^m \cdot e^{-x} = x^n \cdot e^{-x} \Leftrightarrow x^m = x^n \Leftrightarrow x^n(x^{m-n}-1) = 0$$

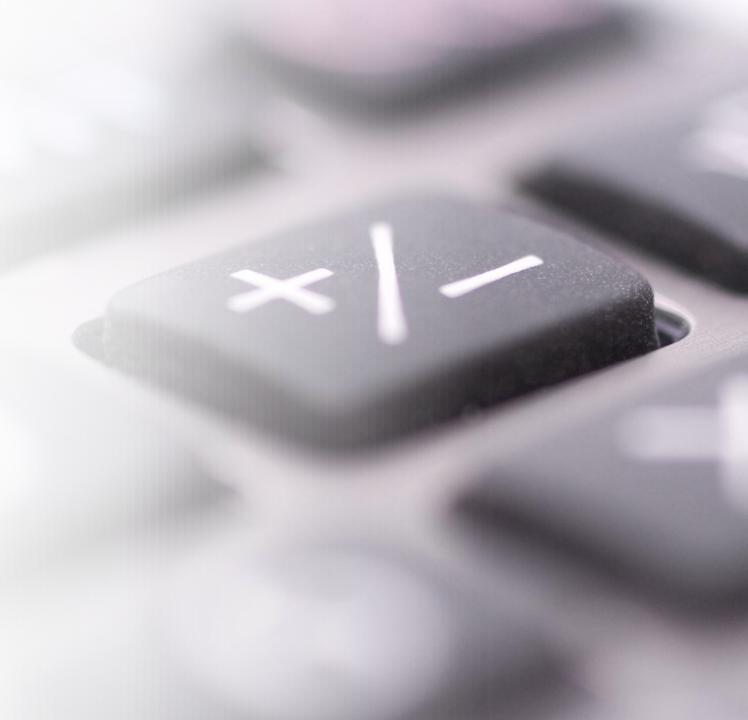
d) Show that the graph of f_n for all n has two horizontal tangent lines and determine an equation of each of these tangent lines.

$$f_n'(x) = n \cdot x^{n-1} \cdot e^{-x} - x^n \cdot e^{-x} = x^{n-1} \cdot (n-x) \cdot e^{-x}$$

$$f_n'(x) = 0 \Leftrightarrow$$

e) Determine the intervals where f_n is increasing or decreasing.

4 marks


Distinguish between even and odd values of n.

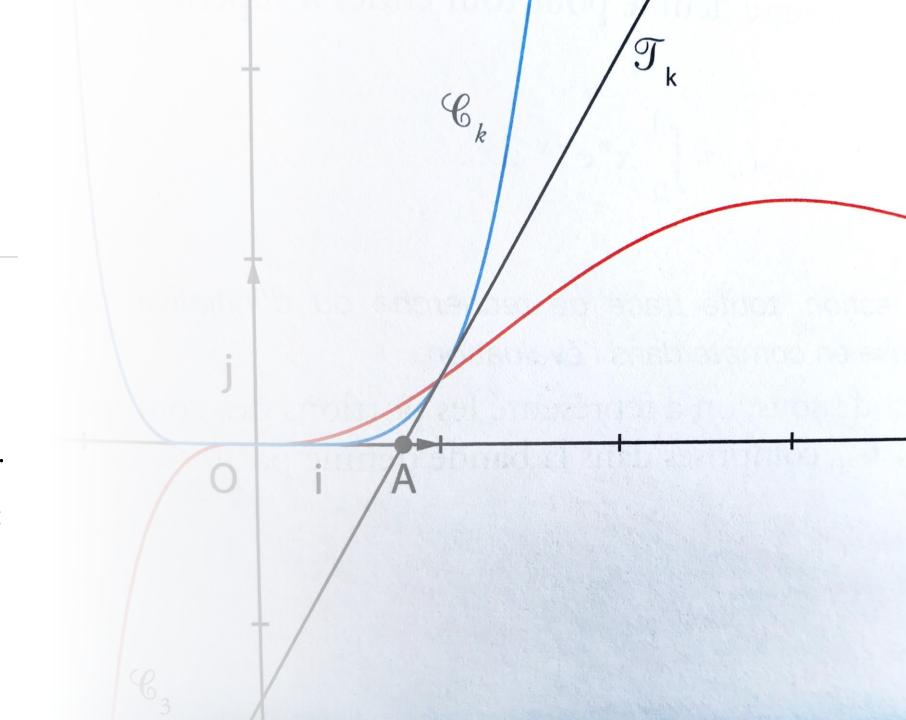
Study the sign of $f_n(x)$

Part B - Calculator							
B1	а	Determine coord. Extrema pointsof interflection	1,0	4,0			5,0
Analysis	b	Detrmine volume solid totation x-axis	2,0	2,0			4,0
	С	Show points in common		2,0	1,0		3,0
Minimum 4 sub questions	d	Show graph has two horizontal tangent lines	2,0	2,0			4,0
	е	Determie intervals increaase/decrease- distingish odd even values of n	2,0	2,0			4,0
							0,0
							0,0
Maximum 8 sub questions							0,0
		S	/ 7,0		-		20,0
		%			-		
	Guideline:					/	20,0
	%			40,0			
		Tolerance (Points):	2,0	4,0	3,0	1,0	

2. Let's shift to a higher proportion of demanding tasks

Improving the exercise

What about investigating on n = 1?


Consider the family of functions f_n defined by

$$f_n(x) = x^n e^{-x}$$
, where $n \in \{2, 3, 4, ...\}$.

What type of question could we ask?

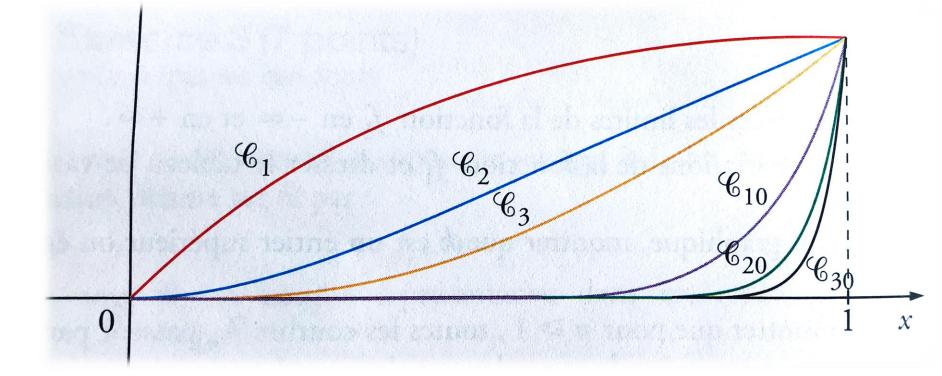
Higher level thinking

- On the graph, we have represented a curve C_k and the tangent T_k to the graph C_k in the point A where x=1.
- Knowing that the tangent intersects the x-axis in $A(\frac{4}{5};0)$, find k.

The 5P drawers!

Complex numbers

Sequences


Probability

Geometry

Analysis

A question that we could discuss now ...

Is it appropriate to lock the construction of knowledge in drawers?

Maybe in the future (near?, far?)

Consider the sequence given by: $I_n = \int_0^1 x^n e^{-x} dx$ $n \in \{1, 2, 3, ...\}$

The graph shows different curves restricted to [0; 1]

Formulate a hypothesis on the direction of variation of the sequence. Demonstrate this conjecture.

Deduce that the sequence is convergent.

Find: $\lim_{n\to+\infty} I_n$

My email address for further questions/suggestions/comments/... gaston.ternes@education.lu

"The road to success is always under construction!"

Thanks again for listening for such a long time ...